Back to overview

Poster

Damping Behaviour of Bioinspired and Natural Fibre Composites

Sunday (01.01.2040)
00:00 - 21:06
Part of:
Line-Up:
- Poster The versatile usage of wrinkled surfaces 1 Bernhard Alexander Glatz
- Poster Penguin feather mimicking oil infused elastomer for anti-icing property 1 Dipl.-Ing. Nguyen Thanh-Binh
- Poster Radiation-based methods for surface modification of supramolecular peptide fibrils 0 Juhaina Bandak
- Poster Investigation of crack propagation of hierarchically structured ceramic materials on different length scales using bending tests 1 Cecilia Müller
- Poster Tobacco mosaic virus disks, preparation of samples to investigate mineralization by low voltage electron microscopy 1 Dr. Sabine Eiben
- Poster Deformation of Liquid-Liquid Phase Boundary as Template for Novel Surface Structured Polymer Particles and Coatings 1 Helena vom Stein
- Poster Sclerenchymatic tissue in Banksia follicles – The effect of moisture on dimensional and mechanical properties 1 Friedrich Reppe
- Poster Reconstructing in-situ nanofibrillar orientation and mechanics in arthropod cuticle using X-ray diffraction modelling 1 Ph.D. Yanhong Wang
- Poster Structural origins of morphing in plant tissues 1 Prof. Dr. Hanoch Daniel Wagner
- Poster What is the effect of cell network topology on the poro-elastic properties of bone? 1 Alexander van Tol
- Poster The fibrillar-level mechanisms of mutability in echinoderm connective tissue analysed using in situ synchrotron small-angle X-ray scattering 1 Dr. Himadri Shikhar Gupta
- Poster Growing bone-like tissues on negative Gaussian curvature surfaces 1 Prof. Dr. John Dunlop
- Poster Gradient porous materials for reliable structured adhesives 1 Ph.D. Di Tan
- Poster Transfer of surface properties of wheat leaves to technical surfaces 1 Miriam Huth
- Poster Damping Behaviour of Bioinspired and Natural Fibre Composites 1 Wilhelm Woigk
- Poster Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides 1 Dr. Ajay Vikram Singh
- Poster Microstructural Assessment of Calvarial Fusion in Mice of Different Ages and its Biomechanical Implications 1 Dr. Junning Chen
- Poster Diffusion-limited electroless silver reduction on copper for "porous monocrystal" 1 Dr. Nikolay Ryzhkov
- Poster Multiscale simulations of directed spider dragline silk self-assembly by flow 1 Dipl.-Ing. Ana Herrera
- Poster Inspirational Multiscale Natural Structures 1 Dr. XiaoMeng Sui
- Poster The Exoskeleton of Scorpions: from Structure to Mechanical Function 1 Israel Kellersztein
- Poster Investigating the multilayer fiber-reinforced structure of the wood cell using computer simulations and additive manufacturing 1 Laura Zorzetto
- Poster Light guided 3D-structuring of EPS produced by red algae 1 Moritz Klotz
- Poster Structural optimization of biopolymer composite Cottonid by variation of manufacturing parameters 1 Matthias Langhansl
- Poster Biomineralization of Materials made of Engineered Spider Silk Proteins 1 Vanessa Wicklein
- Poster Micro-Ikebana by Biomimetic Crystallization of Alkaline Earth Carbonates 1 Shota Kobayashi
- Poster Bioinspired hairy surfaces 0 Stefan Müllers
- Poster Reagent-free modification of bio-hydrogels by electron irradiation towards biomedical applications 1 Stefanie Riedel
- Poster Controlled Modification on Wood via SI-ATRP 1 Marta Vidiella del Blanco
- Poster Plant Biomimetics: Surface-Structured Pollen Particles and Transparent Flower Petals 1 Prof. Dr. Olaf Karthaus
- Poster Coupling of polymers to tobacco mosaic virus: towards the production of amphiphilic virus tubes 1 Dr. Sabine Eiben
- Poster Mechanical stable sulfobetainc Hydrogels - A candidate for biomedical application 1 Ramona Bianca Jasmin Ihlenburg
- Poster Structuring V2O5 Nanocomposites to Adapt the Sponge Spicules’ Architecture 1 Achim Diem
- Poster Fibers, Yarns and Non-Woven Meshes – Tough Morphologies Made of Recombinant Spider Silk Proteins 1 Fabian Müller
- Poster Recombinant Spider Silk-based Hybrid Materials for Advanced Energy Technology 1 Tamara Aigner
- Poster Bio-mediated materials syntheses 1 Dr. Daniel Van Opdenbosch
- Poster Design of Biomimetic Thin Coatings Composed of Cellulose Beta-Nanocrystals for Epitaxial Crystallization and Coassembly of 1D Nanoparticles 0 Dipl.-Ing. Zihao Lu
- Poster Seeded Mineralization Leads to Prismatic-Type CaCO3 Thin Coatings with Multiple Structural Functions 0 Ming Li
- Poster Multifunctional Layered Magnetic Composites 1 Christian Debus
- Poster Cuttlebone-inspired Structures for Mechanical Damping 1 Dipl.-Ing. Andrea Knöller

Session P.1: Poster discussion evening
Belongs to:
Session P: Poster Presentation


The damping behaviour of engineering materials is an important structural property that affects the in-service performance and the components service life. Engineering materials such as steel and continuous fibre reinforced polymers are stiff but usually lack in vibration damping performance. A figure of merit of damping, also referred to as loss modulus, is typically used to characterise the damping performance of materials. The loss modulus is the product of the material’s storage modulus and the loss factor. The figure of merit allows one to categorise materials according to their stiffness and energy loss behaviour. As opposed to steel and carbon fibre composites, biological composites such as wood, bone and nacre exhibit remarkably high figure of merit. The combination of high stiffness and excellent damping behaviour is attributed to the smart hierarchical structuring of relatively weak building blocks.

This study aims to investigate the design principles underlying the enhanced damping properties of natural materials in order to replicate these principles using engineering materials. Our goal is to combine high stiffness and high vibration damping behaviour simultaneously. To this end, we assemble inorganic particles in a nacre-like brick-and-mortar structure that is representative of biological composites. Alumina (Al2O3) platelets in different volume fractions are introduced into an epoxy matrix, aligned magnetically and eventually consolidated through resin curing. The Al2O3 platelets are aligned in various three-dimensional orientations to generate reinforcing architectures with structural anisotropy. Control over the orientation of the discontinuous reinforcing phase allows us to tune the composite’s stiffness and vibration damping behaviour. Our results show that the in-plane orientation of platelets increases the storage and loss moduli by 4-times simultaneously. This implies that the nacre-like architecture enhances the composite’s energy dissipating capability without compromising the stiffness of the material. To transfer the excellent damping behaviour of the platelet-reinforced matrices into conventional fibre reinforced composites, we infiltrate continuous fibres with the platelet-containing resin using an additive manufacturing method. With the introduction of fibres the stiffness of the composites is further increased to 35 GPa whilst preserving the good vibration damping behaviour.

Speaker:
Wilhelm Woigk
ETH Zurich
Additional Authors:
  • Dr. Kunal Masania
    ETH Zürich
  • Prof. Dr. André Studart
    ETH Zürich

To top